Shortcuts

Source code for torchexpo.vision.image_classification.shufflenet

import torchvision
from torchexpo.modules import ImageClassificationModule


[docs]def shufflenet_v2_x0_5(): """ShuffleNet V2 0.5x Model pre-trained on ImageNet""" model = torchvision.models.shufflenet_v2_x0_5(pretrained=True) obj = ImageClassificationModule(model, "ShuffleNet_v2_x0_5", model_example="default") return obj
[docs]def shufflenet_v2_x1_0(): """ShuffleNet V2 1.0x Model pre-trained on ImageNet""" model = torchvision.models.shufflenet_v2_x1_0(pretrained=True) obj = ImageClassificationModule(model, "ShuffleNet_v2_x1_0", model_example="default") return obj
# def shufflenet_v2_x1_5(): # """ShuffleNet V2 1.5x Model pre-trained on ImageNet""" # model = torchvision.models.shufflenet_v2_x1_5(pretrained=True) # obj = ImageClassificationModule(model, "ShuffleNet_v2_x1_5", model_example="default") # return obj # def shufflenet_v2_x2_0(): # """ShuffleNet V2 2.0x Model pre-trained on ImageNet""" # model = torchvision.models.shufflenet_v2_x2_0(pretrained=True) # obj = ImageClassificationModule(model, "ShuffleNet_v2_x2_0", model_example="default") # return obj
Read the Docs v: latest
Versions
latest
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.